Extremal Combinatorics

SS 07
 Exercise Set 10

Exercise 1

We want to improve on the quadratic lower bound of the Ramsey number giving an explicit construction which will still fall short of the $\sqrt{2}^{k}$ probabilistic lower bound, but will improve over the Turán graph.

For this purpose consider the following construction by Nagy (1972) of an infinite sequence of k-Ramsey graphs on $\Theta\left(k^{3}\right)$ vertices.

Let G be the graph with $V(G)=\binom{[k]}{3}$, and we define two vertices A and B to be adjacent if and only if $|A \cap B|=1$.

Prove combinatorial (without using the linear algebra method!) that this graph neither contains a clique of order $k+1$ nor an independent set of order $k+1$.

