Extremal Combinatorics

SS 07
 Exercise Set 2

Exercise 1

Define $e x(n, m, H)$ as the largest number e, such that there is an H-free bipartite graph with partite sets of size n and m respectively containing e edges. Show that

$$
e x\left(q^{2}+q+1, q^{2}+q+1, K_{2,2}\right)=\left(q^{2}+q+1\right)(q+1)
$$

for every prime power q, i.e. the graph from Construction 1 is an optimal construction.

Exercise 2

The goal of this exercise is to calculate

$$
N(\alpha):=\left|\left\{(x, y) \in \mathbb{F}_{q}^{2}: x^{2}+y^{2}=\alpha\right\}\right|
$$

in the field \mathbb{F}_{q} (q being an odd prime tower) by going through the following steps:
(i) Determine $N(0)$ by distinguishing the cases $-1 \in Q R(q)$ and $-1 \in Q N R(q)$.
(ii) Show that $N(\alpha)$ is constant on $Q R(q)$ and it is constant on $Q N R(q)$.
(iii) Calculate $N(1)$ by double-counting the quantity $\sum_{w \in Q R(q)} N(w)$.
(iv) For fixed $b \in Q N R(q)$ calculate $N(b)$.
(v) Conclude that the number of edges of the graph from Construction 2 is in fact $n^{3 / 2} / 2-O(\sqrt{n})$.

Exercise 3

Define the polarity graph G (Construction 3) on the points of the projective plane $P G(p, 2)$ in the following way. Let $V(G)=\left\{\left[x_{0}, x_{1}, x_{2}\right] \in \mathcal{P}\right\}$ and $E(G)=\left\{\{x, y\}: x \neq y, x_{0} y_{0}+x_{1} y_{1}+x_{2} y_{2}=0\right\}$.

Show that the polarity graph indeed contains exactly $p+1$ degree- p-vertices.

