

Institut für Theoretische Informatik Dr. Tibor Szabó and Philipp Zumstein Ecole polytechnique fédérale de Zurich Politecnico federale di Zurigo Swiss Federal Institute of Technology Zurich

30.03.07

Extremal Combinatorics

Exercise 1

Define ex(n, m, H) as the largest number e, such that there is an H-free bipartite graph with partite sets of size n and m respectively containing e edges. Show that

$$ex(q^{2} + q + 1, q^{2} + q + 1, K_{2,2}) = (q^{2} + q + 1)(q + 1)$$

for every prime power q, i.e. the graph from Construction 1 is an optimal construction.

Exercise 2

The goal of this exercise is to calculate

$$N(\alpha) := |\{(x, y) \in \mathbb{F}_q^2 : x^2 + y^2 = \alpha\}|$$

in the field \mathbb{F}_q (q being an odd prime tower) by going through the following steps:

- (i) Determine N(0) by distinguishing the cases $-1 \in QR(q)$ and $-1 \in QNR(q)$.
- (ii) Show that $N(\alpha)$ is constant on QR(q) and it is constant on QNR(q).
- (iii) Calculate N(1) by double-counting the quantity $\sum_{w \in QR(q)} N(w)$.
- (iv) For fixed $b \in QNR(q)$ calculate N(b).
- (v) Conclude that the number of edges of the graph from Construction 2 is in fact $n^{3/2}/2 O(\sqrt{n})$.

Exercise 3

Define the *polarity graph* G (Construction 3) on the points of the projective plane PG(p, 2) in the following way. Let $V(G) = \{[x_0, x_1, x_2] \in \mathcal{P}\}$ and $E(G) = \{\{x, y\} : x \neq y, x_0y_0 + x_1y_1 + x_2y_2 = 0\}$.

Show that the polarity graph indeed contains exactly p + 1 degree-*p*-vertices.