Extremal Combinatorics

SS 07
 Exercise Set 3

Exercise 1

Let \mathbb{F} be an arbitrary finite field. Prove that if $-1 \in \mathbb{F}$ is a square, then the corresponding sphere-graph on n vertices (defined in the 3 -dimensional space over \mathbb{F}) not only contains a $K_{3,3}$, but also a $K_{n^{1 / 3}, n^{1 / 3}}$.

Exercise 2

Prove that the chromatic number of the unit-distance graph for the plane is between 4 and 7 .

Exercise 3

Let q be any odd prime power. Recall that the equation $x^{2}+y^{2}=\beta$, where $\beta \neq 0$ is fixed, has $q-1$ solutions $(x, y) \in \mathbb{F}_{q}^{2}$ if -1 is a quadratic residue in \mathbb{F}_{q}, and $q+1$ solutions if -1 is not a quadratic residue; furthermore, $x^{2}+y^{2}=0$ has $2 q-1$ solutions if $-1 \in Q R(q)$, or 1 single solution if $-1 \in Q N R(q)$.
(a) Give a general exact formula for $N_{k}(\beta)$ the number of solutions to $x_{1}^{2}+\cdots+x_{k}^{2}=\beta$ for any fixed $k \in \mathbb{N}, \beta \in \mathbb{F}_{q}$.
(b) Give an elementary proof that for any $a \in \mathbb{F}_{q}^{3}$ the sphere $S_{\alpha}(a)$ contains either $q^{2}-q$ or $q^{2}+q$ points depending on whether α and -1 are quadratic residues or not.
(c) Count the number of edges in the Brown graph.

