

Institut für Theoretische Informatik Dr. Tibor Szabó and Philipp Zumstein

Extremal Combinatorics

Ecole polytechnique fédérale de Zurich Politecnico federale di Zurigo Swiss Federal Institute of Technology Zurich

20.04.07

Exercise 1

Let \mathbb{F} be an arbitrary finite field. Prove that if $-1 \in \mathbb{F}$ is a square, then the corresponding sphere-graph on *n* vertices (defined in the 3-dimensional space over \mathbb{F}) not only contains a $K_{3,3}$, but also a $K_{n^{1/3},n^{1/3}}$.

Exercise 2

Prove that the chromatic number of the unit-distance graph for the plane is between 4 and 7.

Exercise 3

Let q be any odd prime power. Recall that the equation $x^2 + y^2 = \beta$, where $\beta \neq 0$ is fixed, has q - 1 solutions $(x, y) \in \mathbb{F}_q^2$ if -1 is a quadratic residue in \mathbb{F}_q , and q+1 solutions if -1 is not a quadratic residue; furthermore, $x^2 + y^2 = 0$ has 2q - 1 solutions if $-1 \in QR(q)$, or 1 single solution if $-1 \in QNR(q)$.

- (a) Give a general exact formula for $N_k(\beta)$ the number of solutions to $x_1^2 + \cdots + x_k^2 = \beta$ for any fixed $k \in \mathbb{N}, \beta \in \mathbb{F}_q$.
- (b) Give an elementary proof that for any $a \in \mathbb{F}_q^3$ the sphere $S_{\alpha}(a)$ contains either $q^2 q$ or $q^2 + q$ points depending on whether α and -1 are quadratic residues or not.
- (c) Count the number of edges in the Brown graph.