Extremal Combinatorics

SS 07
 Exercise Set 4

Exercise 1

A natural thought to extend the idea of the Brown graph to $K_{4,4^{-}}$or $K_{4,1000}$-avoiding dense graphs is the following. Instead of three dimensions let us take four, i.e. our vertex set is \mathbb{F}_{p}^{4}. Let the neighborhood of a vertex x be determined by a four-dimensional sphere around it, in particular y is adjacent to x if $\sum_{i=1}^{4}\left(y_{i}-x_{i}\right)^{2}=1$. According to Theorem 2.6, our graph has roughly $c n^{7 / 4}$ edges - the conjectured truth. Prove, however, that this graph contains a $K_{p, p}$.

Also show that even taking a higher degree surface of the form $\sum_{i=1}^{4}\left(y_{i}-x_{i}\right)^{1000}=1$ as the neighborhood of x instead of the sphere would not help us. (Note that Theorem 2.6 ensures that this graph as well has roughly the correct number $\mathrm{cn}{ }^{7 / 4}$ of edges.)

Exercise 2

Prove that in Brown graph roughly half of the triples has two common neighbors and the other half has none.

Exercise 3

Define the graph $G=\left(\mathbb{F}_{p}^{4}, E\right)$ by

$$
\left\{(a, b, c, d),\left(a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}\right)\right\} \in E \operatorname{iff}\left(a+a^{\prime}\right)\left(b+b^{\prime}\right)\left(c+c^{\prime}\right)\left(d+d^{\prime}\right)=1 \text { and }(a, b, c, d) \neq\left(a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}\right)
$$

Prove that G contains a $K_{n^{1 / 4}, n^{1 / 4}}$ where $n=\left|\mathbb{F}_{p}^{4}\right|$.

