Extremal Combinatorics

SS 07
 Exercise Set 5

Exercise 1

The k-color Ramsey Number $R_{k}(G)$ is the largest integer m for which one can color the edges of K_{m} with k colors such that there is no monochromatic copy of G.

Show that $R_{k}\left(K_{3,3}\right)=(1+o(1)) k^{3}$.

Exercise 2

Using Füredi's idea together with the projective norm-graphs prove that for any fixed t

$$
\lim _{s \rightarrow \infty}\left(\liminf _{n \rightarrow \infty} e x\left(n, K_{t, s}\right) n^{-(2-1 / t)}\right)=\infty .
$$

In particular for $t=3$, give a construction such that the known upper bound of $e x\left(n, K_{3, s}\right)$ comes within a factor of $2^{-\frac{1}{3}}+o(1)$ of the lower bound for every $s \geq 3, s=2 r^{2}+1, r \in \mathbb{Z}$.

