Extremal Combinatorics

SS 07
 Exercise Set 7

Let \mathcal{P} be a set of points, and let \mathcal{L} be a set of lines. A subset $I \subseteq \mathcal{P} \times \mathcal{L}$ is called an incidence relation on $(\mathcal{P}, \mathcal{L})$, and then we say that the triple $(\mathcal{P}, \mathcal{L}, I)$ is a (rank two) geometry.

The incidence graph Γ of the geometry is defined on $V(\Gamma)=\mathcal{P} \cup \mathcal{L}$, and its edge set is

$$
E(\Gamma)=\{p l: p \in \mathcal{P}, l \in \mathcal{L},(p, l) \in I\} .
$$

We say that the function $\pi: \mathcal{P} \cup \mathcal{L} \rightarrow \mathcal{P} \cup \mathcal{L}$ is a polarity of the geometry ($\mathcal{P}, \mathcal{L}, I$), if
(i) $\mathcal{P}^{\pi}=\mathcal{L}$ and $\mathcal{L}^{\pi}=\mathcal{P}$,
(ii) for every point p and every line l, we have that p and l are incident if and only if their polar images are incident, i.e $(p, l) \in I \Longleftrightarrow\left(l^{\pi}, p^{\pi}\right) \in I$,
(iii) $\pi^{2}=\mathrm{id}$.

Observe that any polarity π is an automorphism of the incidence graph Γ.
In case a polarity exists we can define the polarity graph of the geometry which, compared to the incidence graph, cuts the number of vertices in half while keeps almost all degrees intact. Formally, the polarity graph Γ^{π} is the graph with $V\left(\Gamma^{\pi}\right)=\mathcal{P}$, and $E\left(\Gamma^{\pi}\right)=\left\{p_{1} p_{2}: p_{1} \neq p_{2},\left(p_{1}, p_{2}^{\pi}\right) \in I\right\}$. We say that $p \in \mathcal{P}$ is an absolute point of π, if $\left(p, p^{\pi}\right) \in I$. Absolute points are the ones which would define a loop in the polarity graph, had we not excluded that possibility. The set of all absolute points is denoted by $N_{\pi}=\{p: p$ is absolute point of $\pi\}$.

Exercise 1

Prove Theorem 3.10 which states
(i) If $p \in N_{\pi}$, then we have $d_{\Gamma^{\pi}}(p)=d_{\Gamma}(p)-1$. Otherwise, $d_{\Gamma^{\pi}}(p)=d_{\Gamma}(p)$.
(ii) $\left|V\left(\Gamma^{\pi}\right)\right|=\frac{1}{2}|V(\Gamma)|$ and $\left|E\left(\Gamma^{\pi}\right)\right|=\frac{1}{2}\left(|E(\Gamma)|-\left|N_{\pi}\right|\right)$.
(iii) If $C_{2 k+1} \subseteq \Gamma^{\pi}$, then $C_{4 k+2} \subseteq \Gamma$.
(iv) If $C_{2 k} \subseteq \Gamma^{\pi}$, then there are two copies of $C_{2 k}$ in Γ such that one is the polar dual of the other.
(v) $g\left(\Gamma^{\pi}\right) \geq \frac{1}{2} g(\Gamma)$.

Exercise 2

Define

$$
\begin{array}{r}
\mathcal{P}_{*}=\left\{(a, b, c): a, b, c \in \mathbb{F}_{q}\right\}, \quad \mathcal{L}_{*}=\left\{[d, e, f]: d, e, f \in \mathbb{F}_{q}\right\} \\
((a, b, c),[d, e, f]) \in I_{*} \Longleftrightarrow e-b=d a, f-c=e a .
\end{array}
$$

Prove that the incidence graph Γ_{*} of the above geometry is nothing else but Wenger's C_{6}-free construction.

Exercise 3

Let $q=2^{2 \alpha+1}$ and define π_{*} by

$$
\begin{aligned}
\pi_{*}:(a, b, c) & \mapsto\left[a^{2^{\alpha+1}},(a b)^{2^{\alpha}}+c^{2^{\alpha}}, b^{2^{\alpha+1}}\right] \\
\pi_{*}:[d, e, f] & \mapsto\left(d^{2^{\alpha}}, f^{2^{\alpha}},(d f)^{2^{\alpha}}+e^{2^{\alpha+1}}\right)
\end{aligned}
$$

(a) Prove that π_{*} is a polarity of the above geometry $\Gamma_{*}=\left(\mathcal{P}_{*}, \mathcal{L}_{*}, I_{*}\right)$.
(b) Prove that the set of absolute points consists of

$$
N_{\pi_{*}}:=\left\{\left(a, b, a^{2^{\alpha+1}+2}+a b+b^{2^{\alpha+1}}\right): a, b \in \mathbb{F}_{q}\right\} .
$$

(c) Show that $\Gamma_{*}^{\pi_{*}}$ is C_{6}-free and conclude that $\operatorname{ex}\left(n, C_{6}\right) \geq \frac{1}{2} n^{4 / 3}-\frac{1}{2} n^{2 / 3}$.

