Extremal Combinatorics

SS 07
 Exercise Set 9

Let $(G,+)$ be a finite abelian group. A homomorphisms χ from $(G,+)$ into $\left(\mathbb{C}^{*}, \cdot\right)$ is called character, i.e. $\chi: G \rightarrow \mathbb{C}^{*}$ is a character of G if

$$
\chi(a+b)=\chi(a) \chi(b), \forall a, b \in G
$$

From this definition we have that $\chi(a)$ is an $n^{\text {th }}$ root of unity, and in particular $\chi(-a)=\chi(a)^{-1}=\overline{\chi(a)}$. The set of characters is denoted by \hat{G}.

Exercise 1

Prove that \hat{G} is an abelian group with the following operation

$$
(\chi \psi)(a):=\chi(a) \psi(a)
$$

Exercise 2

Let ω be a primitive $n^{\text {th }}$ root of unity and define the map $\chi_{j}: \mathbb{Z}_{n} \rightarrow \mathbb{C}^{*}$ by $\chi_{j}(a):=\omega^{j a}$.
Show that $\chi_{j} \in \hat{\mathbb{Z}}_{n}$ for every $j \in \mathbb{Z}$. Moreover, prove that the mapping $s: \mathbb{Z}_{n} \rightarrow \hat{\mathbb{Z}}_{n}$ defined by $s(j)=\chi_{j}$ is an isomorphism between \mathbb{Z}_{n} and $\hat{\mathbb{Z}}_{n}$, that is $\mathbb{Z}_{n} \cong \hat{\mathbb{Z}}_{n}$.

Exercise 3

Show that if $G=H_{1} \oplus H_{2}$, then $\hat{G} \cong \hat{H}_{1} \oplus \hat{H}_{2}$.
Use this statement together with Exercise 2 to prove that $G \cong \hat{G}$.

Exercise 4

Let n be the number of citizen of Switzerland and note that the federal council of Switzerland consist of 7 people (they are called the Bundesrat). Assume the following (imaginary) voting scheme: Each person votes 1 (yes) or 0 (no) and the result of the whole vote is 1 if and only the whole federal council votes 1 ; otherwise it is 0 . Formally

$$
f:=\{0,1\}^{n} \rightarrow\{0,1\}, \quad f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=x_{1} \wedge x_{2} \wedge \ldots \wedge x_{7} .
$$

Write f as a sum of characters $\chi_{y}=(-1)^{\langle y, \cdot\rangle}$, i.e. determine $\hat{f}(y)$ such that

$$
f(x)=\sum_{y \in\{0,1\}^{n}} \hat{f}(y)(-1)^{\langle y, x\rangle} .
$$

