Quadratic Residues

Definition: Let q be a prime power. An element $a \in \mathbb{F}_q^*$ from the multiplicative group of the finite q-element field is called *quadratic residue* if there exists an element $y \in \mathbb{F}_q$ such that

$$y^2 = a.$$

If there is no such y then a is called a *quadratic non-residue*. Note that 0 is excluded from the list of quadratic residues and non-residues. The set of quadratic residues of \mathbb{F}_q is denoted by $QR(q)$ and the set of quadratic non-residues by $QNR(q)$.

Theorem 1 Let q be an odd prime power, and $a \in \mathbb{F}_q^*$ then

$$a \in QR(q) \iff a^{\frac{q-1}{2}} = 1,$$

$$a \in QNR(q) \iff a^{\frac{q-1}{2}} = -1.$$

Furthermore,

$$|QR(q)| = \frac{q-1}{2} = |QNR(q)|.$$

Proof. For the proof of Theorem 1 recall two facts from algebra:

1: A polynomial of degree d, with coefficients from a field R, can have at most d roots in R. (Proof by induction on the degree).

2: Lagrange’s Theorem: In a finite group G, $x^{[G]} = 1$ for any $x \in G$.

On the one hand by Fact 1 the polynomial $x^{q-1} - 1 = 0$ cannot have more than $q - 1$ roots in \mathbb{F}_q. On the other hand it does have $q - 1$ roots by Lagrange’s Theorem, because all the elements in \mathbb{F}_q^* are roots.

Consequently, since $x^{q-1} - 1 = \left(x^{\frac{q-1}{2}} - 1\right)\left(x^{\frac{q-1}{2}} + 1\right)$ and the ring of polynomials over \mathbb{F}_q has no (non-trivial) zero divisors, again Fact 1 implies that both factors $\left(x^{\frac{q-1}{2}} - 1\right)$ and $\left(x^{\frac{q-1}{2}} + 1\right)$ must have exactly $\frac{q-1}{2}$ roots.

If $a = y^2$ is a quadratic residue in \mathbb{F}_q then $a^{\frac{q-1}{2}} = y^{q-1} = 1$ by Lagrange’s Theorem. Hence, a is a root of $x^{\frac{q-1}{2}} - 1$ implying that $|QR(q)| \leq \frac{q-1}{2}$. On the other hand note that by Fact 1 the polynomial $x^2 - a$ has at most two roots for any quadratic residue a, hence

$$q - 1 = |\mathbb{F}_q^*| \leq \sum_{a \in QR(q)} |\{x : x^2 = a\}| \leq 2|QR(q)|.$$

Concluding, $|QR(q)| = \frac{q-1}{2}$ and thus $QR(q)$ must be equal to the set of roots of $\left(x^{\frac{q-1}{2}} - 1\right)$. Then it follows that also $|QNR(q)| = \frac{q-1}{2}$, and $QNR(q)$ must be equal to the set of roots of $\left(x^{\frac{q-1}{2}} + 1\right).$
Corollary 1 \textbf{The product of two quadratic residues or two non-residues is a quadratic residue, whereas the product of a residue and a non-residue gives a non-residue.}

Corollary 2

\[-1 \in QR(q) \iff q \equiv 1 \pmod{4} \]
\[-1 \in QNR(q) \iff q \equiv 3 \pmod{4}. \]

Observe that \(x^2 = (-x)^2 \), which, in the case of a prime field \(\mathbb{F}_p \), implies that
\[QR(p) = \left\{ y^2 : 0 < y \leq \frac{p-1}{2} \right\}. \]

Remark The \(q \)-element field is in general not equal to the ring of congruence classes, i.e. calculating modulo \(q \). Only for \(q \) being a prime this is true. To demonstrate this, we want to calculate the quadratic residue in \(\mathbb{F}_{27} \). The field \(\mathbb{F}_{27} \) can be seen as the ring of polynomials over \(\mathbb{F}_3 \) where we calculate modulo the irreducible polynomial \((x^3 + 2x^2 + 2x + 2) \),
\[\mathbb{F}_{27} \cong \mathbb{F}_3[x]/(x^3 + 2x^2 + 2x + 2). \]

For example \(-1 = 2 \) in this field and
\[(x^2 + x + 1)^2 = x^4 + 2x^3 + x^2 + 2x + 1 = x(x^3 + 2x^2 + 2x + 2) - x^2 + 1 = 2x^2 + 1. \]

We can use Maple to calculate \(QR(27) \) and \(QNR(27) \):
\[> \text{with(numtheory)}: \]
\[> G27 := GF(3,3) : \]
\[> G27[extension] ; \]
\[> (T^3 + 2T^2 + 2T + 2) \mod{3} \]
\[> \text{elements} := \text{seq(G27[input](i), i=0..26)} : \]
\[> q := x \rightarrow \text{evalb(G27['}''](x,13) = G27[input](1)) : \]
\[> QR27 := \text{select(q, [elements])} : \]
\[> QR(27) := \{1,T,2T + 1,2T + 2,T^2,T^2 + 1,T^2 + 2,T^2 + T + 1,T^2 + 2T + 1,2T^2 + T,2T^2 + 2T,2T^2 + 2T + 1\} : \]
\[> QNR27 := \text{select(not q, [elements])} : \]
\[> QNR(27) := \{2,T + 1,T + 2,2T + T^2,T^2 + T^2 + T^2 + T + 2,T^2 + 2T^2 + T + 1,2T^2 + T + 2,2T^2 + 2T^2 + 2T + 2\} : \]