Department of Computer Science | Institute of Theoretical Computer Science | CADMO

Theory of Combinatorial Algorithms

Prof. Emo Welzl and Prof. Bernd Gärtner

Mittagsseminar (in cooperation with A. Steger, D. Steurer and B. Sudakov)

Mittagsseminar Talk Information

Date and Time: Tuesday, October 19, 2004, 12:15 pm

Duration: This information is not available in the database

Location: This information is not available in the database

Speaker: Gabor Szabó

Joint Base Station Scheduling

Consider a scenario where base stations need to send data to users with wireless devices. Time is discrete and slotted into synchronous rounds. Transmitting a data item from a base station to a user takes one round. A user can receive the data item from any of the base stations. The positions of the base stations and users are modeled as points in Euclidean space. If base station b transmits to user u in a certain round, no other user within distance at most |b-u|2 from b can receive data in the same round due to interference phenomena. The goal is to minimize, given the positions of the base stations and users, the number of rounds until all users have their data.

We call this problem the Joint Base Station Scheduling Problem (JBS) and consider it on the line (1D-JBS) and in the plane (2D-JBS). For 1D-JBS, we give a 2-approximation algorithm and polynomial optimal algorithms for special cases. We model transmissions from base stations to users as arrows (intervals with a distinguished endpoint) and show that their conflict graphs, which we call arrow graphs, are a subclass of the class of perfect graphs. For 2D-JBS, we prove NP-hardness and discuss an approximation algorithm.


Upcoming talks     |     All previous talks     |     Talks by speaker     |     Upcoming talks in iCal format (beta version!)

Previous talks by year:   2024  2023  2022  2021  2020  2019  2018  2017  2016  2015  2014  2013  2012  2011  2010  2009  2008  2007  2006  2005  2004  2003  2002  2001  2000  1999  1998  1997  1996  

Information for students and suggested topics for student talks


Automatic MiSe System Software Version 1.4803M   |   admin login