Department of Computer Science | Institute of Theoretical Computer Science | CADMO

Theory of Combinatorial Algorithms

Prof. Emo Welzl and Prof. Bernd Gärtner

Mittagsseminar (in cooperation with M. Ghaffari, A. Steger and B. Sudakov)

Mittagsseminar Talk Information

Date and Time: Tuesday, April 05, 2011, 12:15 pm

Duration: This information is not available in the database

Location: CAB G51

Speaker: Henning Thomas

Explosive Percolation: Defused and Reignited

The evolution of the largest component has been studied intensely in a variety of random graph processes, starting in 1960 with the Erdös-Rényi process. It is well known that this process undergoes a phase transition at n/2 edges when, asymptotically almost surely, a linear-sized component appears. Moreover, this phase transition is continuous, i.e., in the limit the function f(c) denoting the fraction of vertices in the largest component in the process after c*n edge insertions is continuous. A variation of the Erdös-Rényi process are the so-called Achlioptas processes in which in every step a random pair of edges is drawn, and a fixed edge-selection rule selects one of them to be included in the graph while the other is put back. Recently, Achlioptas, D'Souza and Spencer (2009) gave strong numerical evidence that a variety of edge-selection rules exhibit a discontinuous phase transition. However, Riordan and Warnke (2011) very recently showed that all Achlioptas processes have a continuous phase transition. In this talk, I will sketch their proof and furthermore, present a class of Erdös-Rényi-like processes for which we can prove a discontinuous phase transition.


Upcoming talks     |     All previous talks     |     Talks by speaker     |     Upcoming talks in iCal format (beta version!)

Previous talks by year:   2018  2017  2016  2015  2014  2013  2012  2011  2010  2009  2008  2007  2006  2005  2004  2003  2002  2001  2000  1999  1998  1997  1996  

Information for students and suggested topics for student talks


Automatic MiSe System Software Version 1.4803M   |   admin login