# Mittagsseminar (in cooperation with M. Ghaffari, A. Steger, D. Steurer and B. Sudakov)

__Mittagsseminar Talk Information__ | |

**Date and Time**: Tuesday, October 01, 2019, 12:15 pm

**Duration**: 30 minutes

**Location**: CAB G51

**Speaker**: Emo Welzl

## Bistellar and edge flip graphs of triangulations in the plane: Geometry and connectivity.

The set of all triangulations of a finite point set in the plane attains structure via flips: The graph, where two triangulations are adjacent if one can be obtained from the other by an elementary flip. This is an edge flip for full triangulations, or a bistellar flip for partial triangulations (where non-extreme points can be skipped). It is well-known (Lawson, 1972) that both, the edge flip graph and the bistellar flip graph are connected. For n the number of points and general position assumed, we show that the edge flip graph is (n/2-2)-connected and the bistellar flip graph is (n-3)-connected. Both bounds are tight. This matches the situation for regular triangulations (a subset of the partial triangulations), where (n-3)-connectivity was known through the secondary polytope (Gelfand, Kapranov, Zelevinsky, 1990) and Balinski’s Theorem. We show that the edge flip graph can be covered by 1-skeletons of polytopes of dimension at least n/2-2 (products of associahedra). Similarly, the bistellar flip graph can be covered by 1-skeletons of polytopes of dimension at least n-3 (products of secondary polytopes). (covers joint research with Uli Wagner, IST Austria)

Upcoming talks | All previous talks | Talks by speaker | Upcoming talks in iCal format (beta version!)

Previous talks by year: 2019 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996

Information for students and suggested topics for student talks

Automatic MiSe System Software Version 1.4803M | admin login