## Theory of Combinatorial Algorithms

Prof. Emo Welzl and Prof. Bernd Gärtner

# Mittagsseminar (in cooperation with M. Ghaffari, A. Steger and B. Sudakov)

 Mittagsseminar Talk Information

Date and Time: Tuesday, October 25, 2016, 12:15 pm

Duration: 30 minutes

Location: CAB G51

Speaker: May Szedlák

## Redundancies in Linear Systems with two Variables per Inequality

The problem of detecting and removing redundant constraints is fundamental in optimization. We focus on the case of linear programs (LPs), given by $d$ variables with $n$ inequality constraints. A constraint is called redundant, if after removing it, the LP still has the same feasible region. The currently fastest method to detect all redundancies is due to Clarkson: it solves $n$ linear programs, but each of them has at most $s$ constraints, where $s$ is the number of nonredundant constraints. We study the special case where every constraint has at most two variables with nonzero coefficients. This family, denoted by $LI(2)$, has some nice properties. Namely, as shown by Aspvall and Shiloach, given a variable $x_i$ and a value $\lambda$, we can test in time $O(nd)$ whether there is a feasible solution with $x_i = \lambda$. Hochbaum and Naor present an $O(d^2 n \log n)$ algorithm for solving the feasibility problem in $LI(2)$. Their technique makes use of the Fourier-Motzkin elimination method and the earlier mentioned result by Aspvall and Shiloach. We present a strongly polynomial algorithm that solves redundancy detection in time $O(n d^2 s \log s)$. It uses a modification of Clarkson's algorithm, together with a revised version of Hochbaum and Naor's technique. This is joint work with Komei Fukuda.

Previous talks by year:   2018  2017  2016  2015  2014  2013  2012  2011  2010  2009  2008  2007  2006  2005  2004  2003  2002  2001  2000  1999  1998  1997  1996

Information for students and suggested topics for student talks

Automatic MiSe System Software Version 1.4803M   |   admin login