Department of Computer Science | Institute of Theoretical Computer Science | CADMO

Theory of Combinatorial Algorithms

Prof. Emo Welzl and Prof. Bernd Gärtner

Mittagsseminar (in cooperation with M. Ghaffari, A. Steger and B. Sudakov)

Mittagsseminar Talk Information

Date and Time: Tuesday, March 19, 2013, 12:15 pm

Duration: 30 minutes

Location: CAB G51

Speaker: Benjamin Doerr (MPI Saarbruecken)

Mastermind With Many Colors

We analyze the general version of the classic guessing game Mastermind with $n$~positions and $k$~colors. Since the case $k \le n^{1-\eps}$, $\eps>0$ constant, is well understood, we concentrate on larger numbers of colors. For the most prominent case $k = n$, our results imply that Codebreaker can find the secret code with $O(n \log \log n)$ guesses. This bound is valid also when only black answer-pegs are used. It improves the $O(n \log n)$ bound first proven by Chv\'atal (Combinatorica 3 (1983), 325--329). We also show that if both black and white answer-pegs are used, then the $O(n \log\log n)$ bound holds for up to $n^2 \log\log n$ colors. These bounds are almost tight as the known lower bound of $\Omega(n)$ shows. Unlike for $k \le n^{1-\eps}$, simply guessing at random until the secret code is determined is not sufficient. In fact, we show that an optimal non-adaptive strategy (deterministic or randomized) needs $\Theta(n \log n)$ guesses.

Upcoming talks     |     All previous talks     |     Talks by speaker     |     Upcoming talks in iCal format (beta version!)

Previous talks by year:   2018  2017  2016  2015  2014  2013  2012  2011  2010  2009  2008  2007  2006  2005  2004  2003  2002  2001  2000  1999  1998  1997  1996  

Information for students and suggested topics for student talks

Automatic MiSe System Software Version 1.4803M   |   admin login