Department of Computer Science | Institute of Theoretical Computer Science | CADMO

Theory of Combinatorial Algorithms

Prof. Emo Welzl and Prof. Bernd Gärtner

Mittagsseminar (in cooperation with M. Ghaffari, A. Steger and B. Sudakov)

Mittagsseminar Talk Information

Date and Time: Tuesday, October 07, 2014, 12:15 pm

Duration: 30 minutes

Location: CAB G51

Speaker: Vincent Kusters

Column Planarity and Partial Simultaneous Geometric Embedding

We introduce the notion of column planarity of a subset $R$ of the vertices of a graph $G$. Informally, we say that $R$ is column planar in $G$ if we can assign $x$-coordinates to the vertices in $R$ such that any assignment of $y$-coordinates to them produces a partial embedding that can be completed to a plane straight-line drawing of $G$. Column planarity is both a relaxation and a strengthening of unlabeled level planarity. We prove near tight bounds for column planar subsets of trees: any tree on $n$ vertices contains a column planar set of size at least $14n/17$ and for any $\epsilon > 0$ and any sufficiently large $n$, there exists an $n$-vertex tree in which every column planar subset has size at most $(5/6 + \epsilon)n$.

We also consider a relaxation of simultaneous geometric embedding (SGE), which we call partial SGE (PSGE). A PSGE of two graphs $G_1$ and $G_2$ allows some of their vertices to map to two different points in the plane. We show how to use column planar subsets to construct $k$-PSGEs in which $k$ vertices are still mapped to the same point. In particular, we show that any two trees on $n$ vertices admit an $11n/17$-PSGE.

Joint work with Will Evans, Maria Saumell, and Bettina Speckmann.


Upcoming talks     |     All previous talks     |     Talks by speaker     |     Upcoming talks in iCal format (beta version!)

Previous talks by year:   2018  2017  2016  2015  2014  2013  2012  2011  2010  2009  2008  2007  2006  2005  2004  2003  2002  2001  2000  1999  1998  1997  1996  

Information for students and suggested topics for student talks


Automatic MiSe System Software Version 1.4803M   |   admin login