Department of Computer Science | Institute of Theoretical Computer Science | CADMO

Prof. Emo Welzl and Prof. Bernd Gärtner

Mittagsseminar Talk Information |

**Date and Time**: Tuesday, November 25, 2014, 12:15 pm

**Duration**: 30 minutes

**Location**: CAB G51

**Speaker**: Choongbum Lee (MIT)

The Hales-Jewett theorem is one of the pillars of Ramsey theory, from which many other results follow. A celebrated theorem of Shelah says that Hales-Jewett numbers are primitive recursive. A key tool used in his proof, now known as the cube lemma, has become famous in its own right. In its simplest form, this lemma says that if we color the edges of the Cartesian product $K_n \times K_n$ in $r$ colors then, for $n$ sufficiently large, there is a rectangle with both pairs of opposite edges receiving the same color. Shelah's proof shows that $n = r^{\binom{r+1}{2}} + 1$ suffices, and more than twenty years ago, Graham, Rothschild and Spencer asked whether this bound can be improved to a polynomial in $r$. We provide a negative answer to their question and give a superpolynomial lower bound in $r$.

Upcoming talks | All previous talks | Talks by speaker | Upcoming talks in iCal format (beta version!)

Previous talks by year: 2019 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996

Information for students and suggested topics for student talks

Automatic MiSe System Software Version 1.4803M | admin login