Department of Computer Science | Institute of Theoretical Computer Science | CADMO

Theory of Combinatorial Algorithms

Prof. Emo Welzl and Prof. Bernd Gärtner

Bounds For Random Edge in 3-Polytopes

Towards The Peak - Problem Section

next up previous
Next: About this document ... Up: Problem Section Previous: i-Niceness

Bounds For Random Edge in 3-Polytopes

presented by Micha Sharir

Let P be a simple 3-Polytope n facets. Order the vertices according to their height3. There is one vertex with updegree 3 at the beginning of our list and one with updegree 0 at the end of the list. All vertices in-between have either updegree 1 (1-vertices) or updegree 2 (2-vertices). For a vertex v, denote by h1(v) the number of 1-vertices and by h2(v) the number of 2-vertices above v (including v itself). Let E(v) be the expected number of steps for RANDOM EDGE to reach the sink starting from vand F(a,b) be the maximal expected number of steps for RANDOM EDGE starting from a vertex v with h1(v)=a and h2(v)=b. We will sketch a proof for

\begin{displaymath}F(a,b)\leq a+\frac 59 b.\end{displaymath}

This gives an upper bound of $\frac{13}9n$.

Let u be a vertex with h1(u)=a and h2(u)=b. If u is a 1-vertex the expected cost E(u) is the expected cost of its only successor v plus 1 (see fig. 4). Since $h_1(v)\leq h_1(u)-1$ we get

\begin{displaymath}E(u)=1+E(v)\leq 1+F(a-1,b)=1+a-1+\frac59 b=a+\frac59 b.\end{displaymath}


  
Figure 4: u is a 1-vertex
\includegraphics{sharir_1}

For u being a 2-vertex there are several cases. Let v1,v2 be the two higher neighbors of u, v1 lower than v2. Then $E(u)=1+\frac12(E(v_1)+E(v_2))$ and $h_2(v_1),h_2(v_2)\leq h_2(u)=b$.

If between u and v2 is a second vertex, h1(v2)+h2(v2) looses two additional vertices (see fig. 5). Therefore $E(v_2)\leq F(h_1(v_2),h_2(v_2))\leq h_1(v_2)+\frac59 h_2(v_2)\leq a+\frac59b -
3\cdot\frac59$ and

\begin{displaymath}E(u)\leq
1+\frac12(a+\frac59b-\frac59+a+\frac59b-\frac{15}9)=a+\frac59b - \frac19\leq
a+\frac59b\end{displaymath}


  
Figure 5: Both neighbors are far away
\includegraphics{sharir_2_far}

For the rest of the proof we have to deal with the cases that v1 is directly above u and v2 directly above v1. If v1 is a 1-vertex (see fig. 6) we get $E(v_1)\leq F(a,b-1)\leq a+\frac59 b - \frac59$ and $E(v_2)\leq
F(a-1,b-1)\leq a-1+\frac59 b-\frac59$. This gives

\begin{displaymath}E(u)\leq 1+\frac12(a+\frac59 b - \frac59+a-1+\frac59 b-\frac59)=
a+\frac59 b -\frac1{18}.\end{displaymath}


  
Figure 6: v1 is a 1-vertex
\includegraphics{sharir_2_1}

Let now v1 be a 2-vertex. If we have no edge between v1 and v2 (see fig. 7) we get $E(v_1)\leq 1+\frac12(a+\frac59 b - 3\cdot\frac59 + a +\frac59 b
-4\cdot\frac59)=a+\frac59 b-3$ and therefore

\begin{displaymath}E(u)\leq 1+\frac12(a+\frac59 b-3+a\frac59b -\frac{10}9)=a+\frac59 b
-\frac{23}9.\end{displaymath}


  
Figure 7: There is no edge between v1 and v2.
\includegraphics[width=\textwidth]{sharir_2_un}

If there is an edge from v1 to v2 denote by w1 the second successor of v1 and by w2 the successor of v2. If w1=w2, the edge graph of P would be only 2-connected, a contradiction (see fig. 8).


  
Figure 8: Cannot be realized
\includegraphics[width=\textwidth]{sharir_2_imp}

Therefore we have $w_1\neq w_2$ (see fig. 9). With probability $\frac14$ we will go $u\to v_1\to w_1$, with probability $\frac14$ we have $u\to v_1\to v_2\to w_2$ and in all other cases we get $u\to v_2\to w_2$. Therefore

\begin{displaymath}E(u)=\frac14(2+E(w_1))+\frac14(3+E(w_2))+\frac12(2+E(w_2)).\end{displaymath}

For both w1 and w2 we loose at least two 2-vertices and one 1-vertex, so $E(w_1),E(w_2)\leq F(a-1,b-2)\leq a-1+\frac59 b-\frac{10}9$. If w1 is before w2 we loose additional $\frac59$ for E(w2) and if w2 is before w1 we loose $\frac59$ for E(w1). In the first case we get

\begin{displaymath}E(u)\leq\frac14(1+a+\frac59 b-\frac{10}9)+\frac14(2+a+\frac59...
...5}9)+\frac12(1+a+\frac59b-\frac{15}9)=a+\frac59b -\frac{95}{36}\end{displaymath}

and in the second case

\begin{displaymath}E(u)\leq\frac14(1+a+\frac59 b-\frac{15}9)+\frac14(2+a+\frac59
b-\frac{10}9)+\frac12(1+a+\frac59b-\frac{10}9)=a+\frac59b.\end{displaymath}


  
Figure 9: The bottleneck
\includegraphics[width=\textwidth]{sharir_2_bn}


next up previous
Next: About this document ... Up: Problem Section Previous: i-Niceness
Ingo Schurr and Uli Wagner ({schurr,uli}@inf.ethz.ch)
2001-09-04