Department of Computer Science | Institute of Theoretical Computer Science | CADMO

Prof. Emo Welzl and Prof. Bernd GÃ¤rtner

Mittagsseminar Talk Information |

**Date and Time**: Tuesday, December 15, 2009, 12:15 pm

**Duration**: This information is not available in the database

**Location**: CAB G51

**Speaker**: Robin Moser

This talk addresses questions asked by Tibor Szabó at GWOP 09:

For an integer d>=1, let tau(d) be the smallest integer with the following property: If v1,v2,...,vt is a sequence of t>=2 vectors in [-1,1]^d with v1+v2+...+vt in [-1,1]^d, then there is a subset S of {1,2,...,t} of indices, 2<=|S|<=tau(d), such that \sum_{i\in S} vi is in [-1,1]^d. The quantity tau(d) was introduced by Dash, Fukasawa, and Günlük, who showed that tau(2)=2, tau(3)=4, and tau(d)=Omega(2^d), and asked whether tau(d) is finite for all d. Using the Steinitz lemma, in a quantitative version due to Grinberg and Sevastyanov, we prove an upper bound of tau(d) <= d^{d+o(d)}, and based on a construction of Alon and Vu, whose main idea goes back to Hastad, we obtain a lower bound of tau(d)>= d^{d/2-o(d)}. These results contribute to understanding the master equality polyhedron with multiple rows defined by Dash et al., which is a "universal" polyhedron encoding valid cutting planes for integer programs (this line of research was started by Gomory in the late 1960s). In particular, the upper bound on tau(d) implies a pseudo-polynomial running time for an algorithm of Dash et al. for integer programming with a fixed number of constraints. The algorithm consists in solving a linear program, and it provides an alternative to a 1981 dynamic programming algorithm of Papadimitriou.

This is joint work with Kevin Buchin, Jiří Matoušek and Dömötör Pálvölgyi. Special thanks go to Sanjeeb Dash and Patrick Traxler.

Upcoming talks | All previous talks | Talks by speaker | Upcoming talks in iCal format (beta version!)

Previous talks by year: 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996

Information for students and suggested topics for student talks

Automatic MiSe System Software Version 1.4803M | admin login