Department of Computer Science | Institute of Theoretical Computer Science | CADMO

Prof. Emo Welzl and Prof. Bernd Gärtner

Mittagsseminar Talk Information |

**Date and Time**: Tuesday, October 09, 2018, 12:15 pm

**Duration**: 30 minutes

**Location**: CAB G51

**Speaker**: Mykhaylo Tyomkyn (Tel Aviv University)

The Erdős-Hajnal Theorem asserts that non-universal graphs, that is, graphs that do not contain an induced copy of some fixed graph H, have homogeneous sets of size significantly larger than one can generally expect to find in a graph. We obtain two results of this flavor in the setting of r-uniform hypergraphs.

1. A theorem of Rödl asserts that if an n-vertex graph is non-universal then it contains an almost homogeneous set (i.e one with edge density either very close to 0 or 1) of size Ω(n). We prove that if a 3-uniform hypergraph is non-universal then it contains an almost homogeneous set of size Ω(log n). An example of Rödl from 1986 shows that this bound is tight.

2. Let R_{r}(t) denote the size of the largest non-universal r-graph G so that neither G nor its complement contain a complete r-partite subgraph with parts of size t. We prove an Erdős-Hajnal-type stepping-up lemma, showing how to transform a lower bound for R_{r}(t) into a lower bound for R_{r+1}(t). As an application of this lemma, we improve a bound of Conlon-Fox-Sudakov by showing that R_{3}(t) is at least t^{ct}.

Joint work with M. Amir and A. Shapira

Upcoming talks | All previous talks | Talks by speaker | Upcoming talks in iCal format (beta version!)

Previous talks by year: 2019 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996

Information for students and suggested topics for student talks

Automatic MiSe System Software Version 1.4803M | admin login